THERMOELASTIC DESTRUCTION OF TRANSPARENT
MEDIA BY LASER RADIATION
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It is shown that thermoelastic stresses may be the mechanism for the laser destruction of
homogeneous transparent media having high thermal and elastical strength, at least during
the initial stage of this destruction. Threshold values of the radiation density required for
thermoelastic destruction are calculated.

One of the most probable mechanisms for the laser destruction of a transparent brittle medium is the
appearance of thermoelastic stresses. Studies which have appeared on the thermoelastic mechanism for
the effects of radiation on a material have dealt with either the simplest cases or the effects of "gigantic"
lager pulses [1-7]. Khodyko has discussed certain problems involving thermoelastic stresses.

We report here a solution of the spatial problem of the temperature field in a medium heated by laser
radiation and the quasistatic problem of the thermoelastic stresses.

We consider an infinite plate of a transparent material of thickness H at an initial temperature T|.
At t = 0, radiation of intensity q,(t) is incident perpendicular to the plate surface on a circle of radius R;
the radiation intensity is uniform over this circle (Fig. 1). We call the irradiated volume "region 1" and
everything else r > R "region 2." The flux density at any cross section z = const is independent of r and
is given by the Bouguer law

q (2, 2) = go (f) exp (— k2).
The heat conductivity equations and the boundary conditions for regions 1 and 2 are
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By the successive use of a Laplace time transformation and a finite Fourier cosine transformation
with respect to the coordinate z, we find a solution for the boundary-value problem (1)-(2) for the Laplace
transform of the temperature to be
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It is extremely cumbersome to carry out the inverse Laplace transformation for arbitrary kH. For
the transparent materials discussed in this paper (k < 1), and for relatively thin materials, we have kH
« 1. Accordingly, the sum of the series in Egs. (3) can be neglected, with an error evaluated to be no
worse than 1%. We can carry out the inverse Laplace transformation of these transforms using the Duhamel

theorem on transform convolution (see, e.g., [8]); the result is a common expression for the temperature
in regions 1 and 2:
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This solution is valid for any duration of the irradiation. For typical laser-irradiation times, the
parameter p is large, so an asymptotic expansion for the modified Bessel functions [8] can be used to in-
vert Eq. (3) and to find the approximate solution
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The error involved in the replacement of exact solution (4) by the approximation (5) does not exceed the
error due to the discarding of the sum,ie., 1%.

Nlustrative calculations have been carried out for polycrystalline sapphire, K-8 silicate glass, and
polymethylmethacrylate , which differ significantly in strength and thermal properties. The calculations
were carried out for a typical laser pulse 2 msec in duration, approximated by the smooth function (where
t is in milliseconds and E is in joules)
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This approximation also holds under "burst" conditions, since the temperature at any point remains es-
sentially constant during the interval between bursts (3-10 psec).

Figure 2 shows the temperature distribution in 1 mm plates for the case R = 0.2 mm, which corre-
sponds to "sharp' focusing of the radiation,at times t* corresponding to the elastic yield point of the mate-
rial. The temperature dependence of the properties of the materials was taken into account [9, 10]. The
effect of thermal conductivity on the temperature distribution is quite evident from these curves.

We now seek the thermoelastic stresses themselves. Since the displacement velocity is small (~10 cm
/sec), we will solve the quasistatic problem. Since, when there is weak absorption, the temperature given
by Eq. (4) is independent of z, i.e., the plate is thin, all the stresses and displacements are essentially
independent of z. It is a good approximation to consider this a planar stress state (see, e.g., [11]); because
of the symmetry about the beam axis, the stresses and displacements do not depend on the angular coor-
dinate.

Substituting the stress equation in terms of the displacements,
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Fig. 1. Scheme for irradiating the transparent material: 1) irradiation region; 2) region not

irradiated.
Fig. 2. Temperature distribution #(r, t) (R = 0.2 mm): 1) sapphire (t = 0.22 msec); 2) K-8
glass (t = 1.1 msec); 3) polymethylmethacrylate (t = 0.05 msec).

into the equilibrium equation,
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we find the following equations for the displacements
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where the boundary conditions are
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The solution of the boundary-value problem (6)-(7) is
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Substitutir}g the expression for the temperature from Eqgs. (4) or (5) into (8), we find the distribution
of the stress o&l or 020120 at any instant of time.

Figures 3 and 4 show the stress fields for sapphire, K-8 glass, and polymethylmethacrylate. The
values of o and E used were averages over the temperature range through which each material was heated
(see, in particular, [12]). The curves show that the stress 0., is everywhere compressional, while the
stress o ¢ is also compressional in the radiation region but tensile in the region r > R, having a maximum
near the boundary r = R.

Let us evaluate the possibility of destruction in these examples. Whenonly normal 0., and o ppareacting,
brittle destruction occurs when one of the stresses reaches the corresponding strength op [13]. The curves
in Figs. 3 and 4 show that the destructive stresses are attained right at the start of the laser pulse —near

= 0.22 msec at r = 0.22 mm for oyp and r =< 0.46 mm for ¢ . In glass, destruction occurs near t = 1.1
msec for r = 0.204 for T The thermoelastic stresses do not reach the strength limits in polymethyl-
methacrylate.

1241



~Grp r=R

N Gy
! '
L X\ [\\
2000 ‘ 000 -

’ Ope == = T = R
R e A
0 | 3 TT——F———
a7 G 77 04 =
3.
] -

|
I
|
|
1000 ~ ™ -1000
XY \ \
-2000
|| § ot [ T T T,
0 af 92 : 43 3000
Fig. 3 TFig. 4
Fig. 3. Distribution of the stress am.,MN/m2 (R = 0.2 mm): 1) sapphire (t = 0.22 msec);

2) K-8 glags (t = 1.1 msec, Opyp *10); 3) polymethylmethacrylate (t = 0.05 msec, Gy -100).

>

Fig. 4. Distribution of the stress Ugo(p,MN/mz (R = 0.2 mm): 1) sapphire (t = 0.22 msec);
2) K-8 glass (t = 1.1 msec, Top -10); 3) polymethylmethacrylate (t = 0.05 msec, T 100).

It has thus been shown through a solution of the heat-conductivity and thermoelastic-stress problem
that a pulse of (free-generation) laser radiation concentrated in a small area will produce thermoelastic
stresses sufficient to destroy polycrystalline sapphire or K-8 glass. The threshold radiation flux density
£ caleulated for sapphire is 10 J/cm? (an average over the pulse having a flux g; equal to roughly 0.5
10" W/ em?) and g4 ~ 2.7 -10* J/cm? for the glass (q ~ 2.5 -10° W/cm?. The irradiation of polymethyl -
methacrylate at a radiation flux density of &€ =1.3-10* J/em? (g = 2.6 - 10° W/cm?) does not cause its de-
struction by the mechanism of thermoelastic stress. Since polymethylmethacrylate begins to soften at
high energy densities, it is practically impossible to destroy by the thermoelastic-stress mechanism.

In a real material, other mechanisms may operate (thermal explosion at nonuniformities, shock
waves, and electrical breakdown), depending on the medium and parameters of the incident radiation, and
will have an independent effect on the kinetics and ultimate results of the interaction. In homogeneous,
transparent media having high thermal and electrical strength, thermoelastic stresses will be the basic
cause of laser destruction, at least during the initial stage of the irradiation. The formation of the initial
cracks, which act as inhomogeneities in the thermoelastic mechanism leads to an abrupt increase in ab-
sorption of light energy and to the development of local thermal explosions resulting in the formation of
shock waves, thus causing an expansion of the destroyed zone and the rate of its formation. Strictly speak-
ing, the thermoelastic cracking of a material in the overall laser-irradiation process is governed by the
properties of the transparent medium and the parameters of the light pulse; as the examples of sapphire
and K-8 glass show, this cracking may occur outside the radiation zone.

NOTATION

are the cylindrical coordinates;

is the time;

is the sample thickness;

is the radius of the irradiation zone;

is the temperature;

(r,t)=T(,t) =T, is the instantaneous and initial temperature difference;
is the radiation energy density;

is the radiation flux;

N

©

(r,z,p) = § T(r, z, t)exp (—pt)dt is the Laplace transform of the temperature;
0

Hlae 0o 3me e n

P is the Laplace transformation parameter;
Iy(7), Ij(7), Ko(7), K (T) are the modified Bessel functions:
*(x) = (2/V %) S exp (—rhdr is the error function;
X
mi=p/a + n?n?/ H? is the parameter in Eqgs. (3);
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is the absorption coefficient;

is the thermal diffusivity;

is the thermal conductivity;

is the coefficient of linear expansion;

is the Poisson ratio;

is the Young's modulus;
r is the displacement along the r coordinate;
Tyr: 0@@ are the normal stresses.
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